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A Thue equation is a Diophantine equation F (x, y) = m, where F (x, y) ∈ Z[x, y] and
m ∈ Z. By a result of Thue, it is known that the number of solutions to any such equation
is finite. We outline important results and the historical development of various methods
for efficient resolution of the Thue equation. We also highlight the computational challenges
associated with current methods for solving Thue equations. This research is motivated by
the appearance of Thue equations in calculations of norms of prime ideals, an important
element in the General Number Field Sieve, which is asymptotically the most efficient known
factoring algorithm.

1 Introduction

A Thue equation is an irreducible bivariate homogeneous polynomial of the form:

a0x
d + a1x

d−1y + a2x
d−2y2 . . . ady

d = m (1)

with coefficients ai,m ∈ Z, solutions (x, y) ∈ Z2 and degree d ≥ 3.

In 1909, Axel Thue [Thu09] showed that his eponymous equation has only finitely many solutions.

Example 1. Let F (x, y) = x3 − 6x2y − 4xy2 + 5y3.
The Thue equation F (x, y) = 1 has only the following solutions: (−2,−3), (1, 0), (13, 2).

Thue’s result improved upon a previous elementary result of Liouville [Lio44]. Liouville’s result was used
to show that certain well-approximable numbers, the so-called Liouville numbers, cannot be algebraic,
thereby establishing the existence of transcendental numbers.

Theorem 1 (Liouville, 1844). Let θ ∈ R be an irrational algebraic number of degree d. Then there
exists a non-zero constant C such that for all p

q ∈ Q:∣∣∣θ − p
q

∣∣∣ ≥ C
qd

Rational approximation of algebraics and resolution of the Thue equation (along with other types of
Diophantine equation) are intimately linked, due to the following lemma:

Lemma 2. Let F (x, y) = m be a Thue equation of degree d. Let θ be an irrational algebraic number
such that F (θ) = 0. For an approximation p

q ∈ Q to θ, let the quality of the approximation µ be defined
by: ∣∣∣θ − p

q

∣∣∣ = 1
qµ

i.e. µ = logq

(
1

|θ− p
q |

)
.

If |F ′(θ)| > 1, for a solution (x, y) ∈ Z2 to F (x, y) = m, the quality of approximation µ must be greater
than d.
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Proof. Let |F ′(θ)| > 1. For a solution (x, y) ∈ Z2, we have:

1

F ′(θ)
= yd

(
x

y
− θ

)
(2)

1

F ′(θ)
= yd · 1

yµ
(3)

d− µ = logy

(
1

F ′(θ)

)
(4)

As y → ∞, for constant c, logy(c) → 0 which gives:

d− µ→ 0 =⇒ lim
y→∞

µ = d

So for a pair (x, y) to be a solution, the quality of the approximation must be µ > d:∣∣∣∣xy − θ

∣∣∣∣ < 1

yd
(5)

In order to find these exceptional approximations, we turn to the theory of continued fractions:

Lemma 3. [TdW89] Let F (x, y) = m be a Thue equation of degree d. Let g(x) = F (x, 1) and
θ(1), . . . , θ(s) be the s real roots of g(x) = 0. If (x, y) is a solution to F (x, y) = m and:

y > ⌈(4 · 2d−1 · |m|
min
1≤i≤s

|g′(θ(i))|
)1/(d−2)⌉ (6)

then x
y is a convergent from the continued fraction expansion of one of θ(1), . . . , θ(s).

Proof. Let C = 2d−1·|m|
min

1≤i≤s
|g′(θ(i))| . Let y be as in Inequality 6, then:∣∣∣∣θ(i) − x

y

∣∣∣∣ ≤ C · |y|−d

≤ 1

4
· yd−2

1 · |y|−d

<
1

2
· 1

|y|2

(7)

So x
y is a convergent to θ(i) by the following classical lemma [HW79]:

Lemma 4. If
∣∣∣θ − x

y

∣∣∣ < 1
2y2 , then

x
y is a convergent to θ.

Example 2. Let F (x, y) = x3 + 6x2y − xy2 − 9y3.
Then the Thue equation F (x, y) = 1 has only the solutions: (1, 0), (25, 21).

Obtaining the three real roots of F (x, 1):

θ1 = −5.91162784275 . . . , θ2 = −1.27884219059 . . . , θ3 = 1.19047003335 . . .

We see that 25
21 = 1.190476 is a very good rational approximation for θ3, with approximation quality

greater than 3: ∣∣θ3 − 25
21

∣∣ ≈ 1
213.94...

So we have µ ≈ 3.94081528217 . . . .
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By Lemma 3, we can therefore group the solutions (x, y) into two classes:

• ‘Small’ solutions - y is less than the bound in Inequality 6. As the bound is usually quite
small in practice, we can find these solutions efficiently using either exhaustive search or a lattice
reduction method based on an argument of Thunder [Thu15].

• ‘Medium’ solutions - y is greater than the bound in Inequality 6 and so x
y is a convergent to a

real root of F (x, 1). We find these solutions by checking the convergents of the continued fraction
expansion.

The problem of solving Thue equations may therefore be reduced to the problem of finding an upper
bound on y and checking all convergents up to this bound. Unfortunately, the structure of Thue’s
proof, and later improvements due to Siegel [Sie29] and Roth [Rot55], is intrinsically ineffective. As
such, although the proof ensures that the number of solutions is finite, it does not allow us to directly
calculate an upper bound on y and find all solutions for a given form.

The ineffectiveness of Thue’s method was theoretically resolved by Alan Baker’s work [Bak68] on linear
forms in logarithms of algebraic numbers. Baker’s theorem provides an explicitly computable lower
bound for the value of such forms, which then allows one to derive an upper bound on y. Such
an approach was used by Tzanakis and de Weger to solve Thue equations, as outlined in §5. In
practice however, the bounds given by Baker’s method are generally very large and do not allow for
efficient enumeration of solutions. We are therefore currently restricted to solving completely only Thue
equations of relatively low degree or with small discriminant.

2 Motivation

Our principal motivation in researching efficient resolution of the Thue equation lies in its relation to
the Number Field Sieve factoring algorithm. This algorithm consists of 4 separate stages:

1. Polynomial selection

2. Relation collection (sieving)

3. Relation filtering

4. Linear algebra

Although it is highly parellelisable, relation collecting is by far the most computationally intensive
stage of the algorithm. The present approach to relation collection involves evaluating F (a, b) over
fixed intervals of a and b and checking each evaluation for smoothness by a systematic process in which
the value is sieved over a large set of primes. We test (a, b) pairs in the bivariate polynomial selected
in Stage 1 for smoothness below some chosen prime bound. We seek prime ideals ⟨a+ bθ⟩ with smooth
norm. The link to the Thue equation lies in the definition of the norm:

N(a+ bθ) = (−b)df(a
b
) (8)

with f a univariate polynomial of degree d.

Expanding the right hand side of Equation 8, we see that the norm is a bivariate homogenous polyno-
mial, irreducible due to the restrictions placed on the polynomial in Stage 1; that is, Equation 8 is a
Thue equation of degree d.

Figure 1 shows the values of log |F (a, b)| for F = 4x5 + 17x4 − 18x3 − 58x2 + 6x + 1 as a heat graph
[Tho22], with blue and green shades representing smaller values of log |F (a, b)|. As F has 5 real roots,
we see that the graph has 5 ‘valleys’ in which the norm is lower than in the surrounding areas. These
valleys occur around (a, b) points that are good rational approximations to the real roots of F .
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Figure 1: Plot of log |F (a, b)| for F = 4x5 + 17x4 − 18x3 − 58x2 + 6x+ 1.

An (a, b) pair with small norm is more likely to be smooth due to the distribution of smooth numbers:

Theorem 5 (Canfield, Pomerance & Erdös, 1983). [CEP83] Let ψ(x, y) = #{1 ≤ n ≤ x : n is y-
smooth}.
Then:

ψ(x, x1/u) = xu−u+o(u) (9)

uniformly as u→ ∞ and u < (1− ϵ) lnx/ ln lnx.

We are therefore interested in developing relation collection methods that search only within regions
of small norm that are more likely to be smooth; that is, sieving only those (a, b) pairs that are good
rational approximations to real roots of F . Although the vast majority of usable relations come from
the dark blue central area of the graph (in which both a and b are relatively small, with correspondingly
small norm for ⟨a+ bθ⟩), the valleys still contribute a significant percentage of the total relations used
in Stages 3 and 4 of the algorithm, as shown in the graph below:

Figure 2: Relation yield for x5 + x4 − 4x3 − 3x2 + 3x+ 1.

Figure 2 [EH96] shows the number of relations obtained via sieving F = x5 + x4 − 4x3 − 3x2 + 3x+ 1.
Note that the majority of relations are obtained around small values of a and b, with five ridges along
larger (a, b) values corresponding to the five real roots of F .
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3 Thue’s proof

We now outline the structure of Thue’s proof to illustrate its ineffective nature. The refinements of
Thue’s result due to Siegel and Roth employ a similar argument and thereby inherit the ineffective
property. In order to show that the number of solutions to any Thue equation is finite, Thue considered
the number of very good approximations to θ, proving the following result:

Theorem 6 (Thue, 1909). (Thue’s Approximation Theorem) Let θ be an irrational algebraic number
of degree d ≥ 3. Fix ε > 0, then there are only finitely many ‘excellent’ approximations p

q ∈ Q satisfying
the inequality: ∣∣∣∣θ − p

q

∣∣∣∣ ≤ 1

q1+
d
2+ε

(10)

Finiteness of the number of solutions to the Thue equation clearly follows.

Sketch proof. To prove Theorem 6 and its refinements, the argument consists of four main steps. To
begin, we assume that we have at least two ‘excellent’ approximations (as defined in the statement of
Theorem 6) and from there derive a contradiction. Of course, two such good approximations may not
exist, in which case their number is clearly finite.

Let the two approximations be p
q and r

s . The first step is to use the first excellent approximation p
q

to construct auxiliary polynomials Fn(X,Y ) = Pn(X)− Y Qn(X), for n ∈ Z, Pn(X), Qn(X) ∈ Z[X,Y ].
By construction Fn has bounded coefficients and Pn(X)− θQn(X) vanishes to a high order at X = θ,
i.e. the point (θ, θ).

To obtain a contradiction, we now derive upper and lower bounds on
∣∣∣Fn(

p
q ,

r
s )
∣∣∣. Essentially, these

bounds can be used to show that if (pq ,
r
s ) is very close to (θ, θ), then Fn(

p
q ,

r
s ) would vanish too much.

For the upper bound on
∣∣∣Fn(

p
q ,

r
s )
∣∣∣, we see that it is small as Fn has bounded coefficients and both

p
q and r

s are excellent approximations to θ. The derivation of an explicit upper bound is the most
technical part of the proof, involving analysis of the linear system generated by considering the 2n+ 2
coefficients of Pn and Qn, and the linear constraints imposed by the fact that Fn has high-order zeros.
§2.3 of Zannier’s lecture notes [Zan15] provides full details.

The lower bound on
∣∣∣Fn(

p
q ,

r
s )
∣∣∣ is straight-forward. As Pn(X), Qn(X) ∈ Z[X,Y ], we have that Fn(

p
q ,

r
s ) ∈

Q, with its denominator dividing qns. Then Fn(
p
q ,

r
s ) ≥

1
qns , provided Fn(

p
q ,

r
s ) ̸= 0. Given two excellent

approximations of large enough height, these two bounds yield a contradiction.

The final step in the argument is to ensure that Fn(
p
q ,

r
s ) ̸= 0 holds. This step is also quite intricate,

involving analysis of the derivatives of Fn to generate an upper bound on the multiplicity of Fn(
p
q ,

r
s )

(i.e. we show that DiF (pq ,
r
s ) ̸= 0 for a small enough i.)

4 Bounding the number of solutions

There is a large body of work on bounding the number of solutions to Thue equations of a given form.
In particular, we consider the number of primitive solutions, where x and y are coprime. Such work
originates with investigations of Siegel and Mahler. Siegel [Sie29] established that there exists an explicit
upper bound on the number of solutions to F (x, y) = m. In 1933, Mahler [Mah33] proved an upper
bound for a closely related type of equation:

Theorem 7 (Mahler, 1933). Let pz11 , . . . , p
zs
s be distinct primes and let F (x, y) be a Thue-Mahler

equation of degree d ≥ 3, with solutions (x, y) ∈ Z2 and z1, . . . , zs ∈ N:

F (x, y) = pz11 p
z2
2 . . . pzss (11)
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Then the number of primitive solutions (x, y) is less than C1+s, where C is a constant depending only
on F .

This bound was subsequently improved by Davenport and Roth [DR55], who gave an explicit bound
depending on the degree and coefficients of the form:

Theorem 8 (Davenport & Roth, 1955). Let F be a Thue equation of degree d ≥ 3:

a0x
d + a1x

d−1y + a2x
d−2y2 . . . ady

d = m

Let A = max |ai|. Then the number of primitive solutions (x, y) is less than:

(4A)2n
2

|m|3 + e(643d
2) (12)

In 1983, Evertse [Eve83] resolved Siegel’s long-standing conjecture that the upper bound did not depend
on the coefficients of F with the following result:

Theorem 9 (Evertse, 1983). Let F be a Thue equation of degree d ≥ 3. Let ω(m) denote the number
of distinct prime divisors of m. The number of primitive solutions (x, y) to F (x, y) = m is bounded by:

2 · 7d
3(2ω(m)+3) (13)

So, the upper bound depends only on the degree of the form and the number of prime divisors of m.
The next improvement on this bound is due to Bombieri and Schmidt [BS87]:

Theorem 10 (Bombieri & Schmidt, 1987). Let F and ω(x) be as in Theorem 9. There exist absolute
constants c1, c2 such that the number of primitive solutions (x, y) to F (x, y) = m is less than:

c1d
1+ω(m) (14)

Further, for d > c2, the number of solutions is less than:

215d1+ω(m) (15)

The most recent general improvements on the bound are due to Stewart [Ste91] and Thunder.

Theorem 11 (Stewart, 1991). Let F and ω(x) be as in Theorem 9 and assume that the discriminant

D(F ) is non-zero. Let ε > 0. Let n be a divisor of m such that (n,D(F )) = 1 and n1+ε ≥ m(2/d)+ε

|D(F )|1/d(d−1)

Then the number of primitive solutions (x, y) is bounded by:(
5600d+

1400

ε

)
dω(n) (16)

Thus, depending on the prime factorisation of m, Stewart’s bound can be much stronger than the
bound of Bombieri & Schmidt. Similarly, Thunder’s results [Thu15] improve upon Stewart’s bounds,
dependent on the prime factorisation of a factor n of m. In the following theorem, the upper bound
applies to the number of primitive solutions to the closely related Thue inequality:

|F (x, y)| ≤ m (17)

Theorem 12 (Thunder, 2015). For a form F (x, y), consider its factorisation into linear forms over

some splitting field: F (x, y) =

d∏
i=1

Li(x, y).

For F (x, y) and place v, let cF (v) be the number of linear factors Li defined over Qv.

For m ∈ Z, let cF (m) =
∏
p|m

p prime

cF (p).

Let F be a Thue equation of degree d ≥ 3 with D(F ) ̸= 0 and content 1. Let n be a divisor of m such

that n = Am(2/d)

|D(F )|1/d(d−1) for some A ≥ 1. Then the number of primitive solutions to Inequality 17 is less

than:

2500d

(
59 +

log(2 + logm/(1 + logA))

log(d− 1)

)
cF (n) (18)
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cF (n) will always be less than or equal to dω(n), but in the case where cF (n) is significantly smaller,
we achieve a much sharper bound on the number of solutions. These general results have been supple-
mented with a large number of results on Thue equations of a specific form. A comprehensive survey of
results on families of Thue equations of type Fa(x, y) = ±1, parameterised by a, is given by Heuberger
[Heu04], and a more recent general survey by Waldschmidt [Wal20]. The majority of these fully re-
solved families focus on the cubic and quartic cases, although work by Bilu and Hanrot [BH96] focuses
on solving Thue equations of high degree.

We now refer to some of the notable results of Heuberger’s survey, the majority of which are obtained
using variations on the method of linear forms in logarithms:

Theorem 13 (Mignotte, 2000). [MT00] Let F (x, y) = x3 − ax2y − (a + 1)xy2 − y3. Let a ≥ 3. For
F (x, y) = 1, the only solutions are the trivial solutions:

(1, 0), (0,−1), (1,−1), (−a− 1, 1), (1,−a)
Theorem 14 (Wakabayashi, 2003). [Wak03] Let F (x, y) = x3 − a2xy2 + y3. If a ≥ 1.35 · 1014, then
F (x, y) = 1 has the five solutions:

(0, 1), (1, 0), (1, a2), (a, 1), (−a, 1)
Theorem 15 (Mignotte, Pethö & Roth, 1996). [MPR96] Let F (x, y) = x4 − ax3y − x2y2 + axy3 + y4.
For a ≥ 3 and a ̸= 4, the only solutions to F (x, y) = 1 are:

±{(0, 1), (1, 0), (1, 1), (1,−1), (a, 1), (1,−a)}

If there exists c, λ = θ(c, λ) such that
∣∣∣θ − p

q

∣∣∣ > 1
cqλ

with c effective, then c is an effective irrationality

measure for θ. In these theorems, the general approach is to use results on linear forms in logarithms to
obtain an effective irrationality measure that is less than the degree of F , thereby deriving an effective
upper bound on the quality of approximations, and thus, the number of solutions.

While Baker’s method allows for the resolution of large families of Thue equations, Thue himself used
the distinct method of Padé approximation to consider solutions to the equation (a+ 1)xn − ayn = 1:

Theorem 16 (Thue, 1909). Let F (x, y) = (a+ 1)xn − ayn and a≫ d ≥ 3. Then F (x, y) = 1 has only
the solution (1, 1).

Although the method of Padé approximation gives smaller bounds than those obtained by Baker’s
method, it is only applicable to certain forms and therefore does not allow for general solution of the
Thue equation.

A third method, of Bombieri, was used to obtain effective irrationality measures for numbers of the form
d
√

a
b . Baker had previously given an effective irrationality measure for 3

√
2, improved by Chudnovsky

[Chu83] to, for p, q ≥ 1 : ∣∣∣∣ 3
√
2− p

q

∣∣∣∣ > q−2.4297... (19)

Bombieri’s method is similar to Thue’s original method, but removes the restriction that q must be
large in an approximation p

q to θ. Thue’s argument derives a contradiction from the existence of two
exceptional approximations, but his definition of an exceptional approximation is exceedingly restrictive.
By circumventing this restriction, Bombieri is able to show that there can be at most one exceptional
approximation, and to find this approximation explicitly for a range of numbers of the form d

√
a
b . The

prinicipal result is given in a paper of Bombieri and Mueller [BM83]:

Theorem 17 (Bombieri & Mueller, 1983). Let d ≥ 3, (a, b) = 1, δ = log |a−b|
log b and θ ∈ Q( d

√
a
b ) be of

degree d over Q. Let µ(θ) be an effective irrationality measure for θ.
If δ < 1− 2

d , then:

µ(θ) ≤ 2

1− δ
+ 6

(
d5 log d

log b

) 1
3

(20)

So for large values of b and reasonable values of d, Theorem 17 gives an irrationality measure that allows
us to completely resolve the corresponding Thue equation.
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5 Efficient resolution of Thue equations

5.1 Linear forms in logarithms of algebraic numbers

In 1989, Tzanakis and de Weger [TdW89] published an algorithm for the effective resolution of any Thue
equation, followed in 1991 by a p-adic variant for the solution of Thue-Mahler equations ([TdW91],[TdW92]).

The method of Tzanakis and de Weger generates a very large upper bound on y using updated results
on linear forms in logarithms, descending from Baker’s result. The size of this upper bound makes
exhaustive checking of all convergents below the bound computationally infeasible. This very large
bound is then iteratively reduced using the LLL lattice reduction algorithm to a reasonable size and
convergents below this bound may then be checked. This algorithm is implemented in a number of
computer algebra packages, including PariGP and Magma.

Using their method, Tzanakis and de Weger solved completely the following Thue equations:

x4 − 4x3y − 12x2y2 + 4y4 = 1 (21)

x4 − 12x2y2 − 8xy3 + 4y4 = 1 (22)

These equations are resolved using knowledge of a system of fundamental units of Ok of the associated
number field Q(θ), with θ a root of F (x, 1). The system of fundamental units is obtained by a result
of Billevič on units in cubic and quartic fields. For equations of higer degree, we therefore need other
approaches in order to apply the method of Tzanakis and de Weger.

Whilst this method theoretically allows for the resolution of any Thue equation, in practice it is limited
by the fact that the reduction algorithm requires knowledge of the unit group of the associated number
field Q(θ). If the discriminant of F or its degree is large, it becomes computationally infeasible to cal-
culate the unit group and the method fails. Our goal is therefore to obtain upper bounds on y without
requiring computation of the unit group of Q(θ).

There has been some work on equations of higher degree, generally based on adaptations of the meth-
ods of Tzanakis and de Weger. Voutier [Vou95] employed the method to solve Thue equations of up to
degree 14, although the structure of the Thue equations in question meant that the required algebraic
number theoretic data was easily computable.

Bilu and Hanrot [BH96] also did further work on Thue equations of high degree, using a modified
version of Tzanakis and de Weger’s method to solve the equations 2x19 + y19 = ±1,±2 and a more
complex equation of degree 33. Again, this was possible due to the fact that a system of fundamental
units was easily computable for the associated number fields and the method does not generalise to
arbitrary Thue equations of high degree. The particular improvement of their method on the method
of [TdW89] is to replace application of the LLL algorithm to an inequality in a large number of vari-
ables with a simpler process based on continued fractions, applied to an inequality in only two variables.

Hanrot [Han00] took this idea further, modifying the method to solve equations without knowledge of
the full unit group. In this paper, Hanrot solves a Thue equation of degree 41 with knowledge only of
a subgroup of finite index of the unit group. However, Hanrot’s result relies explicitly on the fact that
the associated number field is a subfield of a cyclotomic field, allowing for trivial computation of a sub-
group of the unit group. Thus it seems that the forms that can be resolved using this method are limited.

Smart [Sma96] provides a complexity analysis of the method of Tzanakis and de Weger. This analysis is
given in terms of m and the coefficients of F , under the assumption that F (x, 1) is monic. As discussed,
the method of Tzanakis and de Weger requires computation of a system of fundamental units of Ok;
conjectured subexponential algorithms of Buchmann [Buc88] or Pohst and Zassenhaus [PZ97] may be
used to do this.

Let L(f) =
∑i=1

n |ai|. Then, for computation of the solution set of the Thue equation using Tzanakis
and de Weger’s method, we have:
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Lemma 18. [Sma96] The complexity of finding the small solutions is O(|m|1/d−2).
The complexity of finding the medium solutions is O

(
(R2

K + (1 +RK)(log |m|+ logL(F )))3
)
, with RK

the regulator of the field K.

5.2 The modular approach

Kim takes a completely different approach to solving Thue equations (to be specific, the method applies
to Thue-Mahler equations). A comparison of this method with that of Tzanakis and de Weger is found
in §7 of [Kim17]. The approach is to generate a bound on Y (ZS), where Y is an affine variety defined
by the complement of zeros of F (x, y) in a projective line, and ZS the ring of S-integers of the primes in
Equation 11. This upper bound is determined by associating each solution t ∈ Y (ZS) with an elliptic
curve Xt, then constructing a map:

κ : Y (ZS) → {Elliptic curves over Q}
t 7→ Xt

(23)

We can thereby study t by considering properties of Xt. The bottleneck of this method lies in requiring
data on elliptic curves of a given conductor, which are then tested. Determining all possible suitable
elliptic curves is a computationally hard task; if the conductor is not within the bounds for curves
included in the L-functions and Modular Forms Database (LMFDB)1, the computation is not trivial.
However, if the associated elliptic curves are of a conductor within the database, solving the associated
Thue-Mahler equation is highly efficient compared to the method of Tzanakis and de Weger. More
recently, von Känel and Matschke [vKM23] have also used this modular approach to solve a variety of
Diophantine equations, including Thue-Mahler equations.

1http://www.lmfdb.org/
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41, 1988. Publisher: Citeseer.

[CEP83] E. Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of Oppenheim concerning
“factorisatio numerorum”. Journal of Number Theory, 17(1):1–28, 1983. Publisher: Elsevier.

[Chu83] Gregory Volfovich Chudnovsky. On the method of Thue-Siegel: Dedicated to the memory of
Carl Ludwig Siegel. Annals of Mathematics, pages 325–382, 1983. Publisher: JSTOR.

[DR55] Harold Davenport and Klaus F. Roth. Rational approximations to algebraic numbers. Math-
ematika, 2(2):160–167, 1955. Publisher: London Mathematical Society.

[EH96] Marije Elkenbracht-Huizing. An Implementation of the Number Field Sieve. Experimental
Mathematics, 5(3):231–253, January 1996.

[Eve83] Jan-Hendrik Evertse. Upper bounds for the numbers of solutions of Diophantine equations.
PhD thesis, 1983. Publisher: Centrum Voor Wiskunde en Informatica.

[Han00] Guillaume Hanrot. Solving Thue equations without the full unit group. Mathematics of
Computation, 69(229):395–405, 2000.

[Heu04] Clemens Heuberger. Parametrized Thue Equations: A Survey. Proceedings of the RIMS
symposium “Analytic Number Theory and Surrounding Area”, 1511:82–91, 2004.

[HW79] Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the Theory of
Numbers. Oxford University Press, 1979.

[Kim17] Dohyeong Kim. A modular approach to cubic Thue-Mahler equations. Mathematics of Com-
putation, 86(305):1435–1471, 2017.

[Lio44] Joseph Liouville. Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique
ni même réductible à des irrationnelles algébriques. CR Acad. Sci. Paris, 18:883–885, 1844.

[Mah33] Kurt Mahler. Zur approximation algebraischer zahlen. Almqvist & Wiksell, 1933.
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